Skip to main content

MeshGraphormer Hand Refiner With External Detector

ControlNet Preprocessors/Normal and Depth Estimators
MeshGraphormer+ImpactDetector-DepthMapPreprocessor

Example

JSON Example
{
  "class_type": "MeshGraphormer+ImpactDetector-DepthMapPreprocessor",
  "inputs": {
    "image": [
      "node_id",
      0
    ],
    "bbox_detector": [
      "node_id",
      0
    ]
  }
}

This example shows required inputs only. Connection values like ["node_id", 0] should reference actual node IDs from your workflow.

Inputs

NameTypeStatusConstraintsDefault
imageIMAGErequired--
bbox_detectorBBOX_DETECTORrequired--
bbox_thresholdFLOAToptionalmin: 0.1, max: 1, step: 0.010.5
bbox_dilationINToptionalmin: -512, max: 512, step: 110
bbox_crop_factorFLOAToptionalmin: 1, max: 10, step: 0.013
drop_sizeINToptionalmin: 1, max: 16384, step: 110
mask_bbox_paddingINToptionalmin: 0, max: 100, step: 130
mask_typeENUM
3 options
  • based_on_depth
  • tight_bboxes
  • original
optional-"based_on_depth"
mask_expandINToptionalmin: -16384, max: 16384, step: 15
rand_seedINToptionalmin: 0, max: 1.84e+19, step: 188
resolutionINToptionalmin: 64, max: 16384, step: 64512

Outputs

IndexNameTypeIs ListConnection Reference
0IMAGEIMAGENo["{node_id}", 0]
1INPAINTING_MASKMASKNo["{node_id}", 1]
How to connect to these outputs

To connect another node's input to an output from this node, use the connection reference format:

["node_id", output_index]

Where node_id is the ID of this MeshGraphormer+ImpactDetector-DepthMapPreprocessor node in your workflow, and output_index is the index from the table above.

Example

If this node has ID "5" in your workflow:

  • IMAGE (IMAGE): ["5", 0]
  • INPAINTING_MASK (MASK): ["5", 1]
Was this page helpful?