Skip to main content

Context Big (rgthree)

rgthree
Context Big (rgthree)

Example

JSON Example
{
  "class_type": "Context Big (rgthree)",
  "inputs": {}
}

This example shows required inputs only. Connection values like ["node_id", 0] should reference actual node IDs from your workflow.

Inputs

NameTypeStatusConstraintsDefault
base_ctxRGTHREE_CONTEXToptional--
modelMODELoptional--
clipCLIPoptional--
vaeVAEoptional--
positiveCONDITIONINGoptional--
negativeCONDITIONINGoptional--
latentLATENToptional--
imagesIMAGEoptional--
seedINToptional--
stepsINToptional--
step_refinerINToptional--
cfgFLOAToptional--
ckpt_nameENUM
0 options
    URL: Checkpoint
    optional--
    samplerENUM
    44 options
    • euler
    • euler_cfg_pp
    • euler_ancestral
    • euler_ancestral_cfg_pp
    • heun
    • heunpp2
    • exp_heun_2_x0
    • exp_heun_2_x0_sde
    • dpm_2
    • dpm_2_ancestral
    • lms
    • dpm_fast
    • dpm_adaptive
    • dpmpp_2s_ancestral
    • dpmpp_2s_ancestral_cfg_pp
    • dpmpp_sde
    • dpmpp_sde_gpu
    • dpmpp_2m
    • dpmpp_2m_cfg_pp
    • dpmpp_2m_sde
    • dpmpp_2m_sde_gpu
    • dpmpp_2m_sde_heun
    • dpmpp_2m_sde_heun_gpu
    • dpmpp_3m_sde
    • dpmpp_3m_sde_gpu
    • ddpm
    • lcm
    • ipndm
    • ipndm_v
    • deis
    • res_multistep
    • res_multistep_cfg_pp
    • res_multistep_ancestral
    • res_multistep_ancestral_cfg_pp
    • gradient_estimation
    • gradient_estimation_cfg_pp
    • er_sde
    • seeds_2
    • seeds_3
    • sa_solver
    • sa_solver_pece
    • ddim
    • uni_pc
    • uni_pc_bh2
    optional--
    schedulerENUM
    9 options
    • simple
    • sgm_uniform
    • karras
    • exponential
    • ddim_uniform
    • beta
    • normal
    • linear_quadratic
    • kl_optimal
    optional--
    clip_widthINToptional--
    clip_heightINToptional--
    text_pos_gSTRINGoptional--
    text_pos_lSTRINGoptional--
    text_neg_gSTRINGoptional--
    text_neg_lSTRINGoptional--
    maskMASKoptional--
    control_netCONTROL_NEToptional--

    Outputs

    IndexNameTypeIs ListConnection Reference
    0CONTEXTRGTHREE_CONTEXTNo["{node_id}", 0]
    1MODELMODELNo["{node_id}", 1]
    2CLIPCLIPNo["{node_id}", 2]
    3VAEVAENo["{node_id}", 3]
    4POSITIVECONDITIONINGNo["{node_id}", 4]
    5NEGATIVECONDITIONINGNo["{node_id}", 5]
    6LATENTLATENTNo["{node_id}", 6]
    7IMAGEIMAGENo["{node_id}", 7]
    8SEEDINTNo["{node_id}", 8]
    9STEPSINTNo["{node_id}", 9]
    10STEP_REFINERINTNo["{node_id}", 10]
    11CFGFLOATNo["{node_id}", 11]
    12CKPT_NAMENo["{node_id}", 12]
    13SAMPLEReulereuler_cfg_ppeuler_ancestraleuler_ancestral_cfg_ppheunheunpp2exp_heun_2_x0exp_heun_2_x0_sdedpm_2dpm_2_ancestrallmsdpm_fastdpm_adaptivedpmpp_2s_ancestraldpmpp_2s_ancestral_cfg_ppdpmpp_sdedpmpp_sde_gpudpmpp_2mdpmpp_2m_cfg_ppdpmpp_2m_sdedpmpp_2m_sde_gpudpmpp_2m_sde_heundpmpp_2m_sde_heun_gpudpmpp_3m_sdedpmpp_3m_sde_gpuddpmlcmipndmipndm_vdeisres_multistepres_multistep_cfg_ppres_multistep_ancestralres_multistep_ancestral_cfg_ppgradient_estimationgradient_estimation_cfg_pper_sdeseeds_2seeds_3sa_solversa_solver_peceddimuni_pcuni_pc_bh2No["{node_id}", 13]
    14SCHEDULERsimplesgm_uniformkarrasexponentialddim_uniformbetanormallinear_quadratickl_optimalNo["{node_id}", 14]
    15CLIP_WIDTHINTNo["{node_id}", 15]
    16CLIP_HEIGHTINTNo["{node_id}", 16]
    17TEXT_POS_GSTRINGNo["{node_id}", 17]
    18TEXT_POS_LSTRINGNo["{node_id}", 18]
    19TEXT_NEG_GSTRINGNo["{node_id}", 19]
    20TEXT_NEG_LSTRINGNo["{node_id}", 20]
    21MASKMASKNo["{node_id}", 21]
    22CONTROL_NETCONTROL_NETNo["{node_id}", 22]
    How to connect to these outputs

    To connect another node's input to an output from this node, use the connection reference format:

    ["node_id", output_index]

    Where node_id is the ID of this Context Big (rgthree) node in your workflow, and output_index is the index from the table above.

    Example

    If this node has ID "5" in your workflow:

    • CONTEXT (RGTHREE_CONTEXT): ["5", 0]
    • MODEL (MODEL): ["5", 1]
    • CLIP (CLIP): ["5", 2]
    Was this page helpful?