NormalizeVideoLatentStart
conditioning/video_models
NormalizeVideoLatentStartNormalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames. Helps reduce differences between the starting frames and the rest of the video.
Example
JSON Example
{
"class_type": "NormalizeVideoLatentStart",
"inputs": {
"latent": [
"node_id",
0
],
"start_frame_count": 4,
"reference_frame_count": 5
}
}This example shows required inputs only. Connection values like ["node_id", 0] should reference actual node IDs from your workflow.
Inputs
| Name | Type | Status | Constraints | Default |
|---|---|---|---|---|
latent | LATENT | required | - | - |
start_frame_count? | INT | required | min: 1, max: 16384, step: 1 | 4 |
reference_frame_count? | INT | required | min: 1, max: 16384, step: 1 | 5 |
Outputs
| Index | Name | Type | Is List | Connection Reference |
|---|---|---|---|---|
0 | latent | LATENT | No | ["{node_id}", 0] |
How to connect to these outputs
To connect another node's input to an output from this node, use the connection reference format:
["node_id", output_index]Where node_id is the ID of this NormalizeVideoLatentStart node in your workflow, and output_index is the index from the table above.
Example
If this node has ID "5" in your workflow:
latent (LATENT):["5", 0]
Was this page helpful?