TSR - Temporal Score Rescaling
model_patches/unet
TemporalScoreRescaling[Post-CFG Function] TSR - Temporal Score Rescaling (2510.01184) Rescaling the model's score or noise to steer the sampling diversity.
Example
JSON Example
{
"class_type": "TemporalScoreRescaling",
"inputs": {
"model": [
"node_id",
0
],
"tsr_k": 0.95,
"tsr_sigma": 1
}
}This example shows required inputs only. Connection values like ["node_id", 0] should reference actual node IDs from your workflow.
Inputs
| Name | Type | Status | Constraints | Default |
|---|---|---|---|---|
model | MODEL | required | - | - |
tsr_k? | FLOAT | required | min: 0.01, max: 100, step: 0.001 | 0.95 |
tsr_sigma? | FLOAT | required | min: 0.01, max: 100, step: 0.001 | 1 |
Outputs
| Index | Name | Type | Is List | Connection Reference |
|---|---|---|---|---|
0 | patched_model | MODEL | No | ["{node_id}", 0] |
How to connect to these outputs
To connect another node's input to an output from this node, use the connection reference format:
["node_id", output_index]Where node_id is the ID of this TemporalScoreRescaling node in your workflow, and output_index is the index from the table above.
Example
If this node has ID "5" in your workflow:
patched_model (MODEL):["5", 0]
Was this page helpful?