Skip to main content

SEGS Classify

ImpactPack/HuggingFace
ImpactSEGSClassify

Example

JSON Example
{
  "class_type": "ImpactSEGSClassify",
  "inputs": {
    "classifier": [
      "node_id",
      0
    ],
    "segs": [
      "node_id",
      0
    ],
    "preset_expr": "#Female > #Male",
    "manual_expr": ""
  }
}

This example shows required inputs only. Connection values like ["node_id", 0] should reference actual node IDs from your workflow.

Inputs

NameTypeStatusConstraintsDefault
classifierTRANSFORMERS_CLASSIFIERrequired--
segsSEGSrequired--
preset_exprENUM
7 options
  • #Female > #Male
  • #Female < #Male
  • female > 0.5
  • male > 0.5
  • Age16to25 > 0.1
  • Age50to69 > 0.1
  • Manual expr
required--
manual_exprSTRINGrequired--
ref_image_optIMAGEoptional--

Outputs

IndexNameTypeIs ListConnection Reference
0filtered_SEGSSEGSNo["{node_id}", 0]
1remained_SEGSSEGSNo["{node_id}", 1]
2detected_labelsSTRINGYes["{node_id}", 2]
How to connect to these outputs

To connect another node's input to an output from this node, use the connection reference format:

["node_id", output_index]

Where node_id is the ID of this ImpactSEGSClassify node in your workflow, and output_index is the index from the table above.

Example

If this node has ID "5" in your workflow:

  • filtered_SEGS (SEGS): ["5", 0]
  • remained_SEGS (SEGS): ["5", 1]
  • detected_labels (STRING): ["5", 2]
Was this page helpful?