Skip to main content

Iterative Upscale (Latent/on Pixel Space)

ImpactPack/Upscale
IterativeLatentUpscale

Example

JSON Example
{
  "class_type": "IterativeLatentUpscale",
  "inputs": {
    "samples": [
      "node_id",
      0
    ],
    "upscale_factor": 1.5,
    "steps": 3,
    "temp_prefix": "",
    "upscaler": [
      "node_id",
      0
    ],
    "step_mode": "simple",
    "vae_compression": 8
  }
}

This example shows required inputs only. Connection values like ["node_id", 0] should reference actual node IDs from your workflow.

Inputs

NameTypeStatusConstraintsDefault
samplesLATENTrequired--
upscale_factorFLOATrequiredmin: 1, max: 10000, step: 0.11.5
stepsINTrequiredmin: 1, max: 10000, step: 13
temp_prefixSTRINGrequired-""
upscalerUPSCALERrequired--
step_modeENUM
2 options
  • simple
  • geometric
required-"simple"
vae_compressionINTrequiredmin: 0, max: 256, step: 88

Outputs

IndexNameTypeIs ListConnection Reference
0latentLATENTNo["{node_id}", 0]
1vaeVAENo["{node_id}", 1]
How to connect to these outputs

To connect another node's input to an output from this node, use the connection reference format:

["node_id", output_index]

Where node_id is the ID of this IterativeLatentUpscale node in your workflow, and output_index is the index from the table above.

Example

If this node has ID "5" in your workflow:

  • latent (LATENT): ["5", 0]
  • vae (VAE): ["5", 1]
Was this page helpful?