Skip to main content

PixelTiledKSampleUpscalerProvider

ImpactPack/Upscale
PixelTiledKSampleUpscalerProvider

Example

JSON Example
{
  "class_type": "PixelTiledKSampleUpscalerProvider",
  "inputs": {
    "scale_method": "nearest-exact",
    "model": [
      "node_id",
      0
    ],
    "vae": [
      "node_id",
      0
    ],
    "seed": 0,
    "steps": 20,
    "cfg": 8,
    "sampler_name": "euler",
    "scheduler": "simple",
    "positive": [
      "node_id",
      0
    ],
    "negative": [
      "node_id",
      0
    ],
    "denoise": 1,
    "tile_width": 512,
    "tile_height": 512,
    "tiling_strategy": "random"
  }
}

This example shows required inputs only. Connection values like ["node_id", 0] should reference actual node IDs from your workflow.

Inputs

NameTypeStatusConstraintsDefault
scale_methodENUM
4 options
  • nearest-exact
  • bilinear
  • lanczos
  • area
required--
modelMODELrequired--
vaeVAErequired--
seedINTrequiredmin: 0, max: 1.84e+190
stepsINTrequiredmin: 1, max: 1000020
cfgFLOATrequiredmin: 0, max: 1008
sampler_nameENUM
44 options
  • euler
  • euler_cfg_pp
  • euler_ancestral
  • euler_ancestral_cfg_pp
  • heun
  • heunpp2
  • exp_heun_2_x0
  • exp_heun_2_x0_sde
  • dpm_2
  • dpm_2_ancestral
  • lms
  • dpm_fast
  • dpm_adaptive
  • dpmpp_2s_ancestral
  • dpmpp_2s_ancestral_cfg_pp
  • dpmpp_sde
  • dpmpp_sde_gpu
  • dpmpp_2m
  • dpmpp_2m_cfg_pp
  • dpmpp_2m_sde
  • dpmpp_2m_sde_gpu
  • dpmpp_2m_sde_heun
  • dpmpp_2m_sde_heun_gpu
  • dpmpp_3m_sde
  • dpmpp_3m_sde_gpu
  • ddpm
  • lcm
  • ipndm
  • ipndm_v
  • deis
  • res_multistep
  • res_multistep_cfg_pp
  • res_multistep_ancestral
  • res_multistep_ancestral_cfg_pp
  • gradient_estimation
  • gradient_estimation_cfg_pp
  • er_sde
  • seeds_2
  • seeds_3
  • sa_solver
  • sa_solver_pece
  • ddim
  • uni_pc
  • uni_pc_bh2
required--
schedulerENUM
9 options
  • simple
  • sgm_uniform
  • karras
  • exponential
  • ddim_uniform
  • beta
  • normal
  • linear_quadratic
  • kl_optimal
required--
positiveCONDITIONINGrequired--
negativeCONDITIONINGrequired--
denoiseFLOATrequiredmin: 0, max: 1, step: 0.011
tile_widthINTrequiredmin: 320, max: 16384, step: 64512
tile_heightINTrequiredmin: 320, max: 16384, step: 64512
tiling_strategyENUM
3 options
  • random
  • padded
  • simple
required--
upscale_model_optUPSCALE_MODELoptional--
pk_hook_optPK_HOOKoptional--
tile_cnet_optCONTROL_NEToptional--
tile_cnet_strengthFLOAToptionalmin: 0, max: 1, step: 0.011
overlapINToptionalmin: 0, max: 4096, step: 3264

Outputs

IndexNameTypeIs ListConnection Reference
0UPSCALERUPSCALERNo["{node_id}", 0]
How to connect to these outputs

To connect another node's input to an output from this node, use the connection reference format:

["node_id", output_index]

Where node_id is the ID of this PixelTiledKSampleUpscalerProvider node in your workflow, and output_index is the index from the table above.

Example

If this node has ID "5" in your workflow:

  • UPSCALER (UPSCALER): ["5", 0]
Was this page helpful?